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Abstract 25 
Neural responses are influenced by both external stimuli and internal network states. While 26 
network states have been linked to behavioral and stimulus states, little is known about how 27 
sensory inputs are filtered by whole-brain activity to affect motor and command neurons. Here, 28 
we recorded whole-brain activity of Caenorhabditis elegans experiencing bacterial food stimuli, 29 
and modeled how sensory inputs affect motor and command neurons in a network state-30 
dependent manner. First, we classified active neurons into six functional clusters: two sensory 31 
neuron clusters (ON, OFF), and four motor/command neuron clusters (AVA, RME, SMDD, 32 
SMDV). Using encoding models, we found that ON and OFF sensory neurons that respond to 33 
onset and removal of bacteria, respectively, employ different adaptation strategies. Next, we used 34 
decoding models to show that bacterial onset and removal differentially drive AVA and RME 35 
cluster activity. To explore state-dependent effects on AVA and RME clusters, we developed a 36 
model that identified network states and fitted submodels for each state to predict how each of 37 
the six functional clusters drive AVA and RME cluster activity. We also identified network states in 38 
which AVA and RME clusters were either largely unperturbed by or receptive to bacterial sensory 39 
input. Furthermore, this model allowed us to disentangle the state-dependent contributions of 40 
stimulus timescales and bacterial content to neural activity. Collectively, we present an 41 
interpretable approach for modeling network dynamics that goes beyond implication of neurons in 42 
particular states, and moves toward explicitly dissecting how neural populations work together to 43 
produce state dependence.  44 

Significance Statement 45 

A major function of the brain is to transform sensory information into behavior. As the first 46 
receiver of sensory input, sensory neuron activity is often most correlated with stimulus features. 47 
However, this high-fidelity representation of sensory input becomes diluted as it travels to 48 
downstream neurons, where sensory information is integrated with network activity. By the time 49 
sensory information reaches motor neurons, it is often difficult to dissociate the influence of 50 
sensory input from the influence of network activity. Here, we describe a method that is fully 51 
interpretable such that we can show how neural populations on a whole-brain scale interact to 52 
produce network states. From there, we can attribute motor neuron activity to network history and 53 
sensory input. 54 
 55 
Main Text 56 

 57 
Introduction 58 
   59 
Constant stimuli can have variable influences on neural responses and behavior. On the neural 60 
population level, this variability becomes more pronounced as sensory information is transformed 61 
by downstream neurons. As the initial receiver of sensory information, sensory neurons exhibit 62 
activity that is the most correlated with stimulus features, but are susceptible to sensor errors that 63 
can propagate to behavior (1, 2). At the perception level, sensory input can be modulated by 64 
attention (3, 4), cognitive load (5), perceptual learning (6, 7), internal noise (8, 9), and internally 65 
generated coordinated activity (10). At the motor coordination level, gating of sensory input has 66 
been observed occurring in phase with behaviors such as locomotion (11, 12) and active 67 
whisking (13). However, little is known about how neural populations interact on a global scale to 68 
produce network states that modulate how sensory input is gated at the motor neuron level.  69 
 To disentangle the influences of stimuli and internal network state on downstream neural 70 
activity, precise stimulus control and whole-brain imaging are both needed to accurately account 71 
for experienced stimuli and global network states. Despite advances in modern imaging 72 
technology, most studies are limited to imaging small subsets of a brain’s total activity (14–16). 73 
This problem is alleviated by studying simpler animals like zebrafish, fly larvae, and adult C. 74 
elegans where neural activity at single-cell resolution can be monitored across the entire brain 75 
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(17–20). With only 302 neurons, 189 of which are located in the head, the nematode C. elegans 76 
is ideally suited for whole-brain functional imaging studies. C. elegans whole-brain activity can be 77 
monitored both in restrained and freely moving animals (20–22). Moreover, whole-brain imaging 78 
of restrained animals in a microfluidic chip (20) allows for precise, fast, and complex stimuli 79 
presentations, thereby enabling investigations of stimulus-evoked whole-brain global dynamics 80 
underlying sensory coding (23, 24), motor states (25), and physiological states (26, 27). While 81 
these studies demonstrate the utility of whole-brain imaging and provide insights into the 82 
nematode nervous system, modeling of global network activity has largely focused on identifying 83 
which neurons and activity trends underlie particular behavioral or sensory states, but often fall 84 
short of explaining how populations work together to influence neural activity.  85 

Here, we imaged the calcium activity of the entire C. elegans head while we presented it 86 
with rapidly fluctuating sequences of bacterial food stimuli and control buffer. We chose bacterial 87 
food instead of single-compound odorants in order to study a complex stimulus that is 88 
immediately relevant to C. elegans. We correlated activity of individual neurons to show that 89 
active neurons can be divided into six functional clusters groups. We then used encoding and 90 
decoding models to characterize basic properties of how stimuli drive sensory neurons and 91 
motor/command neurons. Finally, we built a hybrid model to identify network states and build 92 
submodels to explicitly show how sensory and motor populations drive motor/command neuron 93 
activity in each state. This model allowed us to identify network states in which motor/command 94 
neurons were either unresponsive or responsive to sensory input. Furthermore, we revealed how 95 
stimulus features and sensory context were differentially gated in a state-dependent fashion.  96 

 97 
Results 98 
 99 
Food-stimulated whole-brain activity reveals six functional cell clusters 100 
We used an automated microfluidic system (28) to simultaneously image calcium activity in C. 101 
elegans head neurons and present the animal’s nose with pulse-based stimulus sequences that 102 
rapidly fluctuated between liquid flows of bacterial food stimulus (from channel 1) and control 103 
buffer (from channel 2) (Fig. 1A, see Materials and Methods: Stimulus delivery). We refer to this 104 
as the bacteria↔buffer stimulus sequence. To control for artifacts intrinsic to the microfluidic 105 
setup, we also imaged activity while C. elegans was presented with a control buffer↔buffer 106 
stimulus sequence that fluctuated between two chemically identical buffer flows. This microfluidic 107 
system was previously used to show that individual chemosensory neurons detect and respond to 108 
bacteria (29, 30). To monitor whole-brain activity (see Materials and Methods: Whole-brain 109 
imaging), we used a strain that expressed a genetically-encoded nuclear-localized calcium 110 
indicator (GCaMP5K) (25,31). This strain was previously used to obtain whole-brain activity from 111 
restrained C. elegans during controlled delivery of stimuli (20, 25). In addition to this primary 112 
strain, we also recorded calcium activity (GCaMP6s) (32) from a strain that expressed NeuroPAL 113 
(24), which labels all C. elegans neurons with an invariant multicolor fluorescence map and 114 
allows for unambiguous identification of neurons (Fig. 1B-D). We used this as a supplementary 115 
strain to confirm cell identity associated with activity patterns found in the primary strain.  116 

We found that active neurons could be divided into six functional clusters based on 117 
correlated changes in GCaMP fluorescence: two sensory neuron clusters (ON and OFF) and four 118 
motor/command neuron clusters (AVA, RME, SMDD, SMDV) (Fig. 1E–H). We first identified 119 
primary sensory neurons by looking for neurons that were either positively correlated (ON cells) 120 
or negatively correlated (OFF cells) with bacteria pulse onset during bacteria↔buffer stimulus 121 
sequences. Specifically, for each neuron, we first subtracted the changes in fluorescence induced 122 
by bacteria removals from the changes in fluorescence induced by bacteria onsets, and then 123 
ranked each neuron according to this score (see Materials and Methods: ON and OFF sensory 124 
neuron classification). The neurons with the highest and lowest scores were then checked for 125 
additional criteria before being classified as ON cells and OFF cells, respectively. ON cells were 126 
categorized as those neurons that obviously and immediately increased activity upon all bacteria 127 
onsets, and immediately decreased upon bacteria removals (Fig. 1I). Conversely, OFF cells were 128 
classified as neurons that decreased activity upon bacteria onsets and increased upon bacteria 129 
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removals (Fig. 1I). OFF cells were additionally required to rapidly decrease activity in response to 130 
initial bacterial onsets, dropping well below their pre-stimulus baseline, indicating that these 131 
sensory neurons are inhibited by bacteria rather than activated by the control buffer flow (Fig. 1I). 132 
This OFF cell behavior of being inhibited by a stimulus was absent in the control buffer↔buffer 133 
stimulus sequences. Instead, we found only ON cells that were activated by either the onset of 134 
the channel 1 buffer (ON-1 cells) or the onset of channel 2 buffer (ON-2 cells) (Fig. S1). 135 
Additionally, we identified fewer sensory neurons in animals presented with buffer↔buffer 136 
stimulus sequences (Fig. S1A) than with bacteria↔buffer stimulus sequences (Fig. 1F,G). This 137 
suggests that additional sensory neurons respond during bacteria ↔ buffer stimulus sequences, 138 
compared to buffer↔buffer stimulus sequences. Therefore, bacteria↔buffer stimulus sequences 139 
activate ON and OFF sensory neurons that respond to bacteria onset and removal, respectively, 140 
rather than to bacteria onset and buffer onset. 141 

The vast majority of neurons did not respond immediately to stimulus changes (Fig. 1F–142 
H). Across these neurons, we observed two pairs of stereotypical activity patterns: a pair of 143 
clusters that were anti-correlated and bistable (Fig. 1H, red and blue), and a pair of clusters that 144 
were anti-correlated and moderately fast (Fig. 1H, purple and yellow). Using the NeuroPAL–145 
GCaMP6s strain to identify neurons, we found that RME motor neurons and AVE command 146 
neurons were anti-correlated and bistable (Fig. 1J), consistent with previous findings (25). We 147 
also found that SMDD and SMDV neurons were anti-correlated and exhibited moderately fast 148 
dynamics (Fig. 1K). These 4 representative motor and command neurons are associated with 149 
forward locomotion (RME), reverse locomotion (AVA), dorsal turning (SMDD), and ventral turning 150 
(SMDV) in C. elegans (25,  34–37). Using AVA, RME, SMDD, and SMDV as representative 151 
neurons, we sorted non-sensory neurons into clusters based on how their activity correlated with 152 
these four representative neurons (Fig. 1I–K). Many of the low noise neuronal traces strongly 153 
correlated (>85%) with either the identified RME motor neurons or AVA command neurons (Fig. 154 
1F,G). A number of other calcium traces appeared as distorted, noisy versions of AVA or RME 155 
(Fig. S2), and the counts shown in the Fig. 1F,G are likely an underestimate of the true number of 156 
cells that are highly correlated with AVA and RME. In contrast, SMDV and SMDD were often the 157 
sole members of their eponymous clusters, usually with no other neurons that strongly correlated 158 
with these neurons (Fig. 1F,G). AVA, and RME were previously shown to have strong positional 159 
stereotypy, and thus, after identifying these neurons with NeuroPAL, their activity signature and 160 
stereotyped location made them easy to identify in the absence of NeuroPAL. SMDV and SMDD 161 
neurons were also readily identified by their previously reported distinctive activity signature (37). 162 
Therefore, we were able to subsequently identify all four motor/command neuron clusters in non-163 
NeuroPAL-GCaMP5K animals without a coinciding NeuroPAL map (Fig. 1F,G).  164 

These six cell clusters appeared in every animal, and we could not identify any other cell 165 
cluster that appeared consistently across all animals exposed to bacteria↔buffer stimulus 166 
sequences. We also observed similar clustering of active neurons in animals exposed to 167 
buffer↔buffer stimulus sequences (Fig. S1A). Putative cells not appearing in one of the 168 
aforementioned six cell clusters typically resembled noise or noisier versions of the activity 169 
patterns exhibited by the six cell clusters. To reduce dimensionality of the dataset with little loss of 170 
information (due to high correlation), we averaged across the activity traces of all neurons within 171 
a cluster (1I–K). Hence, all subsequent modeling used cluster-averaged representations to 172 
simplify model structure.  173 
 174 
Bacteria addition and removal differentially drive activity of sensory, AVA, and RME 175 
clusters  176 
To analyze how ON and OFF sensory neurons differ in their responses beyond the single-pulse 177 
timescale, we built encoding models to predict how sensory neuron activity adapts to repeated 178 
stimuli presentations (Fig. 2A, see Materials and Methods: Encoding model). Both ON and OFF 179 
cells are driven away from baseline activity (in opposite directions) upon bacteria onset and return 180 
to baseline upon bacteria removal. ON and OFF cells habituate to repeated bacteria 181 
presentations such that the change (increase for ON, decreases for OFF) in fluorescence from 182 
baseline is smaller in subsequent bacteria pulses (Fig. 1I). Here, we explored which timescale of 183 
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adaptation best described ON and OFF cells: 1) perfect adaptation, in which neurons cease 184 
responding despite persistent stimulation, 2) imperfectly adapting adaptation, in which neurons 185 
attenuate but do not fully terminate their responses, and 3) non-adaptation, in which neural 186 
responses are unaffected by recent stimulus history. 187 

To examine the timescales of adaptation in ON and OFF cells, we used a cascade model 188 
that was previously used to describe adaptation to odors in C. elegans sensory neurons (38). 189 
This model is built on a cascade of simple ordinary differential equation (ODE) models of the 190 
form:  191 

where τ is the time constant that controls how fast a linear temporal filter responds to stimulus 193 
[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]. The temporal filter describes how the recent history of the stimulus contributes to the 194 
current value of inferred calcium level of the cell, 𝑋𝑋(𝑡𝑡). With τ constrained to be positive, 𝑋𝑋(𝑡𝑡) is 195 
guaranteed to exhibit perfect adaptation. That is, when encountering a step-change stimulus, 196 
𝑋𝑋(𝑡𝑡) will briefly change activity before terminating the response and returning to its baseline level. 197 
This model performed well for uncorrelated stimulus patterns but struggled considerably on 198 
correlated patterns (38). Kato and colleagues supposed these issues could be mediated by 199 
including more than two of the simple ODE filters. In other words, the authors hypothesized that 200 
C. elegans sensory cells adapt at more than one timescale. To test this hypothesis, as well as to 201 
ascertain whether the perfect adaptation assumption is justified, we simplified and generalized 202 
this model: 203 

where 𝑥𝑥(𝑡𝑡) is the inferred calcium level of the cell and is calculated as the sum of the temporal 205 
filters (ODE model solutions), 𝑓𝑓𝑔𝑔 is the GCaMP filter, and 𝑝𝑝 is a positive value required for the 206 
GCaMP transformation. This model learns the coefficients τ and 𝑎𝑎𝑖𝑖 for an arbitrary number of 207 
ODE basis function, and thus can learn adaptation on multiple timescales. Moreover, this model 208 
can test the effects of perfect and imperfect adaptation on model fit by toggling the coefficient 209 
constraint, such that perfect adaptation entails the following constraint:  210 

This model formulation produced consistent and robust fits to C. elegans sensory 212 
neurons and allowed us to test the effects of different model complexities. In this approach, each 213 
sensory neuron’s fluorescence trace was divided into three contiguous blocks. We used a 3-fold 214 
cross validation approach (i.e., two of the blocks are used to fit the model, while the third is used 215 
for testing) to assess model performance as a function of the number of basis filters and the type 216 
of adaptation. For ON cells, all adapting models significantly outperformed the non-adapting 217 
model according to a hierarchical bootstrap (p < 0.05 with Bonferroni correction, Fig. 2B, S3A). A 218 
perfectly adapting model with one primary filter and one adapting filter performed best, matching 219 
previous findings (38). Similarly, OFF cell adapting models outperformed the non-adapting model 220 
(Fig. 2C, S3B). However, unlike ON cells, OFF cells were best described by an imperfectly 221 
adapting model with one primary filter and one adapting filter, while the perfectly adapting model 222 
was the worst-performing model (not significantly better than non-adapting model) (Fig. 2C, S3B). 223 
It is possible that OFF sensory cells perfectly adapt over a longer timescale, but the fast 224 
adaptation relevant to this study is imperfect in OFF cells. Using more than two basis functions 225 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.04.09.439242doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439242


 

 

6 

  

(one primary filter and one adapting filter) hurt cross-validation performance (data not shown). 226 
While previous studies hypothesized that more than two cascade equations were required to 227 
model adaptation on multiple timescales (38), here we found that the type of adaptation and not 228 
the number of cascade equations to be more important for modeling OFF sensory neurons.  229 

We also compared the timescales of ON and OFF temporal filters. For both ON cells and 230 
OFF cells, primary filters are fast and follow the fluctuation of stimuli, while the adapting filters 231 
reflect the slower timescale of adaptation. While ON and OFF cells displayed similar timescales in 232 
their primary filters, OFF cells have faster adapting filters (higher τ and lower time-to-half-peak) 233 
than ON cells (Fig. 2D,E). Thus, the OFF cell rebound was fast relative to ON cell habituation. 234 
Moreover, the OFF cell rebound was weak compared to ON cell habituation. In the best-235 
performing OFF cell model, the adapting filter coefficient was typically smaller in magnitude than 236 
the primary filter coefficient (Fig. 2E). Thus, the OFF cell adapting filter does little to temper 237 
stimulus inhibition of OFF cells. Instead, it seems to be designed to produce fast rebounds to 238 
bacteria removal.  239 

Adaptation appears to have different goals in ON and OFF cells. ON cells obey a fairly 240 
straightforward perfect adaptation law that can be explained by calcium depletion. OFF cells, on 241 
the other hand, exhibit an imperfect, fast rebound strategy. This latter strategy will not efficiently 242 
encode stimulus across large concentration scales. It will, however, maintain a higher dynamic 243 
range for constrained concentrations scales. We surmise that ON sensory cells may be designed 244 
to work across larger concentration scales, engaging specific OFF cells for specific concentration 245 
ranges. Overall, we show that ON and OFF sensory neurons have different adaptation kinetics to 246 
rapidly fluctuating bacterial stimulus sequences.  247 

To determine how different phases of stimulus presentation affects motor neurons, we 248 
next built decoding models to predict stimulus state from motor/command cluster activity (see 249 
Materials and Methods: Decoding model). In bacteria↔buffer stimulus sequences, bacteria 250 
pulses are effectuated by directing bacteria flow from channel 1 over the C. elegans nose (Fig. 251 
2F), while buffer pulses result when buffer from channel 2 flows over the nose and displaces the 252 
bacterial flow (Fig. 2G). Since C. elegans is positioned asymmetrically in the microfluidic chip 253 
relative to the two channels (channel 1 is slightly closer to the nose), we also analyzed animals 254 
presented with buffer↔buffer stimulus sequences to control for mechanosensory responses to 255 
differences in flow properties between the two channels (Fig. 2H).  256 

Unlike sensory neuron clusters, shifts in motor/command neuron cluster activity do not 257 
reliably coincide with stimulus transitions (Fig. 1H–K). Therefore, we used multinomial logistic 258 
regression (MLR) to predict the probabilities of a particular stimulus state given motor neuron 259 
cluster activity inputs. MLR (39) is a robust classification model that, when combined with class 260 
balancing, has a very natural null model: prediction from worm identity only. Here, linear 261 
predictions about stimulus state are generated by linearly combining a set of weights with 262 
explanatory variables of a given observation: 263 
 264 

 266 
where 𝑆𝑆𝑖𝑖(𝑡𝑡) is the stimulus class 𝑖𝑖 at time window 𝑖𝑖. The 𝑘𝑘-dimensional 𝑋𝑋(𝑡𝑡) captures motor 267 
neuron cluster activity at time window 𝑡𝑡 along with worm identity information. 𝛽𝛽𝑖𝑖,𝑘𝑘 is made up of 268 
the coefficients for stimulus state 𝑖𝑖, which are regularized using an L1 norm and learned using 269 
gradient ascents. 16-second time windows of motor/command neuron cluster activity data were 270 
divided into thirds (5.33 seconds each). To predict the stimulus state in the middle subwindow (t-271 
2.67s to t+2.67s, with t as the halfway point of the prediction window), motor/command neuron 272 
cluster activity data from the first subwindow (t-8s to t-2.67s) and the last subwindow (t+2.67s to 273 
t+8s) were used for the decoding task (see Materials and Methods: Decoding model).  274 

We used this model to decode neural activity inputs from AVA, RME, SMDD, and SMDV 275 
clusters (Fig. 2I). Worm identity was also considered to capture variability across animals. The 276 
decoding model predicted four stimulus states for bacteria↔buffer stimulus sequences: 277 
prolonged bacteria, prolonged buffer, bacteria-to-buffer transition, and buffer-to-bacteria transition 278 
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(Fig. 2I). Importantly, initial onsets and removals of bacteria are included in transition states, but 279 
not in prolonged states. For buffer↔buffer stimulus sequences, corresponding states based on 280 
channel activation were predicted. In predicting stimulus states associated with bacteria↔buffer 281 
stimulus sequences, decoding from the activity of the RME and AVA cluster pair improved 282 
performance over decoding from identity alone in both non-NeuroPAL–GCaMP5K (99.3% of 283 
bootstraps, Fig. 2J) and NeuroPAL–GCaMP6s (99.4% of bootstraps, Fig. S4A) strains. In 284 
contrast, decoding from the activity of the SMDD and SMDV cluster pair did not perform better 285 
than the null model (Fig. S4B). Moreover, RME and AVA cluster activity could also be used to 286 
predict stimulus state in buffer↔buffer stimulus sequences, outperforming prediction from worm 287 
identity alone (Fig. S4C).  288 

The decoding model produced linear temporal filters that described how stimulus states 289 
contributed to motor/command neuron cluster activity. Temporal filters for buffer↔buffer stimulus 290 
sequences revealed that flow from both buffer channels had similar effects on motor/command 291 
cluster activity. Prolonged buffer from either channel was associated with similar transient 292 
increases in both AVA and RME cluster activity (Fig. 2K,L). Both types of buffer-to-buffer 293 
transitions (channel 1 → channel 2, channel 2 → channel 1) reduced AVA cluster activity while 294 
RME cluster activity remained near baseline (Fig. 2M,N). In contrast, temporal filters for 295 
bacteria↔buffer stimulus sequences indicated that bacteria and buffer differentially drove AVA 296 
and RME cluster activity. Prolonged bacteria was associated with sustained increase in RME 297 
cluster activity and strong decrease in AVA cluster activity (Fig. 2O), while prolonged buffer was 298 
associated with sustained inhibition of RME cluster activity and low AVA cluster activity (Fig. 2P). 299 
The bacteria-to-buffer transition induced a slow increase in RME cluster activity, while AVA 300 
cluster activity remained near baseline (Fig. 2Q). The temporal filter predicting bacteria-to-buffer 301 
transition from RME cluster activity (Fig. 2Q) resembled a diminished version of the temporal filter 302 
predicting prolonged bacteria (Fig. 2O), suggesting that bacteria removal did not immediately 303 
alter RME activity. The converse buffer-to-bacteria transition is associated with rapid peak in AVA 304 
cluster activity and near-baseline RME cluster activity (Fig. 2R). The temporal filter for predicting 305 
buffer-to-bacteria transition from AVA cluster activity (Fig. 2R) is higher in magnitude than the 306 
temporal filter predicting prolonged buffer from AVA cluster activity (Fig. 2P), suggesting that 307 
bacteria onset has an immediate effect on the AVA cluster. Bacteria↔buffer decoding models 308 
were also remarkably similar across non-NeuroPAL–GCaMP5K and NeuroPAL–GCaMP6s 309 
strains (Fig. S4D–G). Altogether, these results suggest that bacteria presentation biases the 310 
AVA–RME cluster pair towards RME cluster activation (associated with forward locomotion), 311 
while bacteria removal biases the cluster pair towards AVA cluster activation (associated with 312 
reverse locomotion). Furthermore, motor/command responses to buffer differ depending on 313 
whether the overall sensory context also includes bacterial stimuli.  314 
 315 
Identification of interpretable network states that vary in sensory gating properties 316 
Based on our previous decoding results that AVA and RME motor/command clusters are 317 
influenced by sensory input, we next investigated how global network activity and sensory input 318 
drive AVA and RME cluster activity under different network states. We created a hierarchical 319 
model that used a soft decision tree (SDT) gating model (40) to identify relevant network states, 320 
and then we fitted MLR forecasting submodels for each network state to predict AVA and RME 321 
cluster activity (see Materials and Methods: SDT–MLR model). This combination of models, 322 
which we refer to as the SDT–MLR model, overcomes the limitation of using a single linear model 323 
to describe motor neuron cluster activity. For instance, members of the AVA cluster are bistable: 324 
they have upper and lower stable states (boundedness). Also, activity in these cells appears to 325 
have momentum: when one of these cells begins a transition between its stable states, it will tend 326 
to complete that transition. A single, linear model is unable to describe both momentum and 327 
boundedness. An appropriate model should learn the positive correlation between future AVA 328 
cluster rise and past AVA cluster increases to capture momentum. At the same time, this positive 329 
correlation should weaken and become negative as AVA nears its upper bound as these cells do 330 
not rise above that limit. Here, we employed multiple MLR models to capture nonlinear dynamics, 331 
including features like momentum and boundedness. We then used an SDT gating model to route 332 
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in recent network activity (AVA, RME, SMDD, SMDV clusters) to different network states. Each of 333 
these network states is associated with a different MLR model. In so doing, the SDT parceled the 334 
space of network trajectories into subspaces in which network evolution can be approximated by 335 
linear, probabilistic models. This parcellation and linearization strategy is similar to what has been 336 
previously used (41). In our SDT–MLR modeling, there were 𝑀𝑀 × 𝑁𝑁 MLR submodels, where 𝑀𝑀 is 337 
the number of models being compared and 𝑁𝑁 is the number of states parceled by the SDT. If the 338 
stimulus effect depends on network history, then we expect that the stimulus filters will differ 339 
across MLR submodels. As an end-to-end interpretable distillation of a neural network, the SDT is 340 
capable of learning complex, non-linear features. Moreover, since both the SDT and MLR 341 
submodels are differentiable, they can be simultaneously fit using gradient-based optimization 342 
methods. 343 
 We started by comparing forecasting models that predict AVA and RME cluster activity 344 
from recent network and sensory neuron activity, with models that predict from network history 345 
alone. This allowed us to assess whether sensory input from bacteria↔buffer stimuli were more 346 
relevant in some network states compared to others. Using recent network history inputs from 347 
AVA, RME, SMDD, and SMDV clusters, the full SDT-MLR model was fitted to a hyperparameter 348 
set for predicting RME and AVA calcium change (rise and fall). This model generated a tree with 349 
three levels, consisting of top level filters, along with right and left subtree filters (Fig. S5A), and 350 
four network states that produced the best results (Fig. 3A, S5B,C, see Materials and Methods: 351 
SDT–MLR model). State 1 and 4 were transient states, with state 1 associated with AVA cluster 352 
peaks, and state 4 associated with RME cluster peaks (Fig. 3A). In contrast, state 2 and 3 were 353 
persistent states (Fig. 3A). State 2 was characterized by high AVA, low RME, low SMDV, and 354 
high SMDD cluster activities, while state 3 exhibited the opposite (Fig. 3A). After network states 355 
were identified, the SDT was then frozen, and the MLR submodels were fitted to the rest of the 356 
data in an out-of-bootstrap cross-validation strategy to assess feature variability (42).  357 
 In the out-of-bootstrap cross-validation, inclusion of ON and OFF sensory neuron activity 358 
improved overall model performance (summed across states) in >95% of bootstraps. However, 359 
when considering model performance for individual network states, inclusion of sensory activity 360 
was only useful in states 3 and 4, but provided little predictive value in states 1 and 2 (Fig. 3B), 361 
despite the variance in stimulus sequence being similar across all states. Both sensory-362 
responsive states (states 3 and 4) are characterized by low AVA and high RME cluster activities, 363 
both of which are associated with forward locomotion (Fig. 3B). Conversely, the sensory-364 
unresponsive states (states 1 and 2) display the opposite activity trends with high AVA and low 365 
RME cluster activities, which are associated with reverse locomotion (Fig. 3B). This suggests that 366 
sensory input is gated more heavily during reverse locomotion than during forward locomotion, 367 
and that forward locomotion is a sensory-responsive behavior.  368 
 For each state, the SDT–MLR model generated linear temporal filters that predicted how 369 
recent network history from AVA, RME, SMDV, and SMDD clusters affected the probability of 370 
AVA and RME activity trends. In general, temporal filters were similar across predicted neural 371 
activity associated with forward locomotion (AVA fall, RME rise; Fig. 3C, middle two rows), as well 372 
as across activity associated with reverse locomotion (AVA rise, RME fall; Fig. 3C, top and 373 
bottom rows). Additionally, temporal filters were similar across the sensory-unresponsive states 374 
(state 1 and 2), except that recent SMDV history had a diminished effect on forward-associated 375 
activity in state 2. Linear filters across the sensory-responsive states (state 3 and 4) resembled 376 
each other, except for how network history drove AVA fall in state 4. Notably, RME cluster history 377 
drove AVA and RME cluster activity in general in sensory-unresponsive states, but had a neutral 378 
or suppressive effect in sensory-responsive states. Some state-invariant trends included the 379 
suppressive effect of SMDD history on AVA rise, as well as the suppressive effect of AVA on 380 
RME rise (Fig. 3C). Here, we describe some of the general trends of how network history 381 
influenced AVA and RME cluster activity in a state-dependent fashion, but Fig. 3C can be readily 382 
interpreted to understand in detail how each motor/command cluster affected AVA and RME 383 
cluster activity in each state. 384 
 Next, we looked at how sensory input influences particular AVA and RME cluster activity 385 
trends under different network states. As expected from Figure 3B, temporal filters predicting AVA 386 
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and RME cluster activity from ON and OFF sensory activity were generally flat in states 1 and 2, 387 
indicating that sensory information was broadly suppressed from motor/command activity in these 388 
states (Fig. 3D). In contrast, states 3 and 4 exhibited more temporal filters in which sensory 389 
activity either increased or decreased the probability of AVA and RME activity trends (Fig. 3D). 390 
The largest effects of sensory input are on reverse-associated motor/command activity (AVA rise, 391 
RME fall), which is suppressed by ON activity and elevated by OFF activity (Fig. 3D). Within 392 
reverse-associated activity, OFF activity has a greater influence on AVA rise, while ON activity 393 
has a greater influence on RME fall (Fig. 3D). Additionally, ON sensory input drives RME rise in 394 
state 3 (Fig. 3D), suggesting that forward locomotion that characterizes state 3 can be maintained 395 
with ON activation of RME and OFF suppression of AVA. Overall, we show that SDT–MLR 396 
models can be used to identify relevant network states, characterize how those states are 397 
generated by network history, and delineate the state-dependent effects of stimuli on 398 
motor/command neuron activity.  399 
 400 
Effect of stimulus timescales and sensory context on AVA and RME clusters 401 
To further deconstruct sensory influences on AVA and RME cluster activity, we divided 402 
bacteria↔buffer stimulus sequences into stimulus patterns with either low- or high-variance pulse 403 
protocols, and fitted separate SDT–MLR models using corresponding neural activity (Fig. S6, S7). 404 
The main difference between low- and high-variance protocols is that alternating stimulus blocks 405 
consist of a single long pulse in the former, and composed of multiple short pulses in the latter 406 
(see Materials and Methods: Division of stimulus sequences). In general, high-variance pulses 407 
generally had more effect on AVA and RME cluster activity than low-variance pulses (Fig. 4A). To 408 
compare the overall effect of each network state on sensory gating, we summed the absolute 409 
values of magnitudes from all temporal filters within a state (Fig. 4A, last row). While high- and 410 
low-variance stimulus pulses had similar overall effects in state 4, high-variance pulses had more 411 
than twice as much influence as low-variance pulses in state 3 (Fig. 4A, last row). Particularly in 412 
state 4, low-variance pulses can result in uneven influence from ON and OFF neurons, such as 413 
greater ON influence on RME fall and greater OFF influence on AVA rise (Fig. 4A). While state 1 414 
and 2 were initially deemed to be broadly unresponsive to sensory input (Fig. 3B), enriching the 415 
model with a subset of pulse lengths revealed some sensory influence in state that was 416 
previously masked when all timescales were considered. For example, in state 1, high-variance-417 
pulse ON activity promoted AVA fall, while high-variance-pulse OFF activity suppressed AVA fall 418 
(Fig. 4A). These opposite effects likely canceled each other out when all stimulus pulse lengths 419 
were considered, thereby resulting in a sensory-unresponsive model prediction (Fig. 3D). 420 
Furthermore, segregation of stimuli by low- or high-variance pulses revealed more sensory 421 
influence on forward locomotion in states 3 and 4 (Fig. 4A) that was previously undetected in the 422 
all-pulse SDT–MLR model (Fig. 3D). Thus, the SDT–MLR model can be used to also detect 423 
feature-specific effects of stimuli on motor/command neuron activity.  424 
 We next explored the ability of SDT–MLR models to differentiate sensory contexts by 425 
comparing buffer↔buffer and bacteria↔buffer stimulus sequences. Since high-variance pulses 426 
were shown to have greater overall effect (Fig. 4A), we compared only high-variance pulses from 427 
buffer↔buffer and bacteria↔buffer stimulus sequences. In the SDT–MLR model for 428 
buffer↔buffer stimulus sequences (Fig. S8), inclusion of buffer↔buffer sensory activity improved 429 
overall performance only for state 4 (Fig. S8A). Compared to bacteria↔buffer sensory input, 430 
temporal filters predicting AVA and RME cluster activity from buffer↔buffer sensory input typically 431 
displayed slower timescales (Fig. S8C). Based on the sum of absolute magnitudes of all temporal 432 
filters within a state, buffer↔buffer stimuli generally had more influence than bacteria↔buffer 433 
stimuli in states 1 and 2, and less influence in state 3 (Fig. 4B). While the state-agnostic decoding 434 
model found no difference between channel 1 and channel 2 buffer flows in how they drove AVA 435 
and RME cluster activity (Fig. 2K–L), the SDT–MLR model found that the channel 1 buffer had a 436 
greater effect on AVA and RME cluster activity than the channel 2 buffer in states 2, 3, and 4 (Fig. 437 
4B, gray). This bias may be due to channel 1 being closer to the C. elegans nose, as previously 438 
surmised. However, this bias disappeared when bacteria was included in the sensory context 439 
(Fig. 4B, cyan). Therefore, while channel 2 is chemically the same for both buffer↔buffer and 440 
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bacteria↔buffer stimulus sequences, the effect that the channel 2 buffer had on AVA and RME 441 
cluster activity changed depending on whether the greater sensory context involves switching 442 
between chemically identical buffers, or switching between bacterial stimuli and buffer.  443 
  444 
  445 
Discussion   446 
 447 
Here, we demonstrate that the SDT–MLR model can identify interpretable global network states 448 
that underlie differential gating of sensory input at the motor and command neuron level. First, we 449 
used state-agnostic encoding and decoding models to confirm that bacteria onset and removal 450 
differ in how they drive activity of sensory neurons, AVA, and RME clusters. Using the SDT–MLR 451 
model, we identified two sensory-unresponsive network states (states 1 and 2) and two sensory-452 
responsive network states (states 3 and 4) in the bacteria↔buffer sensory context. For each 453 
network state, we explicitly characterized how the history of each of the four functionally defined 454 
motor/command neural populations (AVA, RME, SMDD, SMDV) drive AVA and RME cluster 455 
activity to produce each network state. Finally, we used the SDT–MLR model to identify how 456 
sensory input in general, as well as stimulus features and sensory context in particular, influence 457 
AVA and RME cluster activity.  458 
 The encoding model showed that sensory neural responses to the addition of bacterial 459 
stimuli (ON) and its removal (OFF) can be modeled by two linear ordinary differential equations 460 
using one fast and one slow filter. Linearity in sensory neurons is observed in both vertebrates 461 
and invertebrate photoreceptors (43), rat trigeminal neurons (44), and primate vestibular neurons 462 
(45), implying that this might be a common phenomenon. We also show that ON sensory neurons 463 
perfectly adapt to the bacterial stimulus, consistent with previous studies (38), while OFF neurons 464 
adapt imperfectly. Given that our analysis included all sensory neurons responding to bacterial 465 
stimuli, we suggest that this might be a general principle of C. elegans sensory neurons. Similar 466 
differences in adaptation in ON and OFF neurons are also observed in single-cell 467 
electrophysiological recordings from vertebrate photoreceptors and olfactory sensory neurons 468 
(46). Moreover, these results also provide some hints about the encoding strategies of these two 469 
sensory-neuron classes. We suggest that ON neurons encode stimulus over a larger dynamic 470 
range compared to OFF neurons. Consistently, we have previously shown that AWA sensory 471 
neurons (ON) have a larger dynamic range compared to AWC sensory neurons (OFF) in 472 
detecting benzaldehyde (47). Moreover, studies in the vertebrate retina have shown that the 473 
dynamic range of the ON pathway is much greater than that of the OFF pathway, likely due to a 474 
selective effect of pre-synaptic inhibition on the ON, but not OFF, bipolar cells (48), confirming the 475 
validity of our hypothesis. 476 
 The decoding model informed which motor/command neural populations were targets of 477 
the sensory input, and also served as a state-agnostic model to compare with the state-478 
dependent SDT–MLR model. Both models were used to assess how sensory input affects AVA 479 
and RME cluster activity. While the decoding model found no difference in effect between either 480 
of the buffer channels in buffer↔buffer stimulus sequences, the SDT–MLR model revealed that 481 
buffer↔buffer sensory input does indeed have a channel bias that is more pronounced in some 482 
states than others. This suggests that the SDT–MLR model is more sensitive to sensory effect 483 
compared to the decoding model. This sensitivity is further amplified by subdividing sensory 484 
effects by state, channel, sensory neuron classification (ON/OFF), prediction class (AVA rise, 485 
AVA fall, RME rise, RME fall), and stimulus features (high-variance pulses, low-variance pulses). 486 
This granular approach allowed us to identify specific sensory effects that were obscured in more 487 
general analyses. We found that high-variance and low-variance pulses had similar influences in 488 
one state, but sensory input from low-variance pulses were gated more heavily in another state. 489 
Additionally, we revealed that state-dependent gating of buffer stimulus is dependent on whether 490 
the greater sensory context involves switching between bacteria and buffer, or between buffer 491 
and buffer. 492 

The SDT–MLR model differs in both goal and interpretability from recent studies that 493 
described network states in C. elegans whole-brain activity (25, 27, 37, 49). In these studies, 494 
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whole-brain activity is analyzed with the purpose of understanding the temporal dynamics of 495 
neuronal populations in terms of how the network state evolves over time. Often, probabilities of 496 
network state transitions are related to corresponding stimulus or behavioral transitions. A 497 
dimensionality reduction technique called principal component analysis (PCA) (50) is used to 498 
quantify brain-wide correlations that reflect signals shared by clusters of neurons. These shared 499 
signals are referred to as temporal principal components (PCs). A key operation of PCA-based 500 
analyses is to transform whole-brain activity to new axes defined by the top PCs that explain the 501 
most variance in data. However, the meaningful linear axes that originally described the data are 502 
lost in the process. While PCA-based analyses are useful for distinguishing between network 503 
states and their transition between each other, these networks states and transitions are 504 
described in terms of PCs, which can be difficult to interpret. Nonetheless, PC weights can still be 505 
used to identify relevant neurons and activity trends associated with each state (25, 27, 37, 49). 506 
In our study, we are less concerned with the probabilities of transitioning between states, and 507 
more interested in the within-state conditional probabilities of individual neuronal populations 508 
interacting with each other. Instead of using PCA, our model preserves interpretability by using 509 
soft decision trees, such that network states and network interactions are always described by the 510 
identities of neuronal populations and their corresponding activity patterns. Rather than 511 
supplanting PCA-based analyses, our SDT–MLR model serves as a complementary method for 512 
focusing on the network interactions within individual network states rather than the temporal 513 
dynamics that connect those network states.  514 
 Interestingly, the sensory-responsive states identified by the SDT–MLR are characterized 515 
by neural activity that has been previously shown to be associated with forward locomotion, while 516 
the sensory-unresponsive states are characterized by neural activity associated with reverse 517 
locomotion. This is consistent with previous reports showing that inhibition of sensory input 518 
occurs at particular phases of the locomotory cycle (11, 12). Inhibition of sensory input during 519 
movement may serve to distinguish between external stimuli and self-generated stimuli (51), 520 
which is accomplished by integrating sensory inputs with motor inputs (corollary discharge) (52). 521 
Since typical C. elegans locomotion consists primarily of forward locomotion punctuated by 522 
transient reversals (53), one possibility is that sensation of stimuli is suppressed during reversals 523 
to temporarily pause processing of stimulus flows until a stable locomotion state is restored. It is 524 
important to note that our study was conducted with C. elegans trapped in an immobilized 525 
position in a microfluidic chip, and therefore behavioral associations were inferred purely from 526 
motor and command neuron activity. Moreover, a recent study showed that the set of neurons 527 
correlated with AVA differs depending on whether C. elegans is immobilized or freely moving 528 
(49). Thus, our association of AVA and RME clusters activity with forward and reverse locomotion 529 
is tentative and should be confirmed in freely moving animals. However, while imaging freely 530 
moving C. elegans would provide rich behavioral information that can be added to the SDT–MLR 531 
model, complex and precise stimuli presentation can be difficult to achieve when the stimulus 532 
target is mobile. There are some efforts to study sensation in freely moving animals (22, 54), and 533 
a reasonable balance of behavioral and sensory information richness may be achieved with a 534 
microfluidic chip that allows semi-restricted locomotion and somewhat fast waves of liquid stimuli 535 
(55).  536 

Overall, we present an approach for understanding how sensory information filters 537 
through whole-brain network interactions to affect downstream motor and command neurons in a 538 
state-dependent manner. Currently, there is an epistemological bias towards identifying network 539 
states that correspond with a particular stimulus or motor state. In contrast, there has been less 540 
focus on network states that are defined by altered network interactions. Our computational 541 
approaches provide a method for investigating network mechanisms at the level of pairwise 542 
interactions between neuronal populations. While our study only looked at the network 543 
mechanisms underlying sensorimotor integration, this model can be leveraged to also understand 544 
how network inputs are integrated at any network level. More broadly, we suggest that our 545 
approach of combining soft decision trees with multinomial logistic regression can be used to 546 
identify relationships, not only in neural networks, but also in cellular signaling pathways, 547 
transcription factor networks, and between other complex biological or physical entities. 548 
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 549 
Materials and Methods 550 
 551 
Whole-brain imaging  552 
We used two transgenic strains that expressed GCaMP. The primary strain (ZIM294) expressed 553 
GCaMP5K in the nuclei of all neurons (mzmEx199 [Punc-31::NLSGCaMP5K; Punc-122::GFP]). 554 
To identify neurons associated with activity patterns observed in ZIM294, we used a strain 555 
(OH15500) that expressed GCaMP6s and NeuroPAL (otIs669[NeuroPAL];otIs672[Panneuronal 556 
GCaMP6s]). Cells were identified according to the map described by Yemini and colleagues (24). 557 
We monitored changes in GCaMP fluorescence using a Zeiss LSM 880 with Airyscan. Acquisition 558 
was done in 2 micron z-steps. In ‘Fast’ mode, the Airyscan images the entire head of the adult 559 
worm at about 1.5 volumes per second. Worms were typically imaged for approximately ten 560 
minutes. We then used piecewise rigid registration to remove motion artefacts (56) and non-561 
negative matrix factorization to isolate individual neurons and extract their fluorescence values 562 
(33). Out of a total 189 neurons in the head, our approach identified 50-100 neurons per animal. 563 
 564 
Stimulus delivery 565 
Day 1 adult animals were washed in M9 and loading into in a microfluidic device that trapped the 566 
worm body while exposing only the nose to stimulus flows (28). Animals were also treated with 567 
1.5 mMol of the paralytic tetramisole hydrochloride to suppress most perceivable worm 568 
movement. The movement of untreated worms proved too difficult to motion correct. We 569 
delivered precise patterns of fluctuating bacteria and M9 buffer liquid flows using a custom 570 
designed Arduino device to send pulses to a valve controller. The bacteria solution was prepared 571 
as a 1:1 resuspension of a bacterial culture (OD600 = 0.4) in M9 buffer as previously described 572 
(29). The controller determines whether bacteria or buffer is routed to the nose of the trapped 573 
worm or away from the worm. Worms were exposed to binary patterns of bacteria and buffer. A 574 
number of different stimulus protocols are used in this study. In the base protocol, the trial is 575 
divided up into pulse blocks of ~15 seconds. The pattern is constructed using transition 576 
probabilities: p(switch on | off) = 0.2 and p(switch off | on) = 0.4. In the faster protocols, the same 577 
switch probabilities are used but the pulse blocks have length ~1.5 seconds. The patterned 578 
protocols are effectively the same as the base protocol. The only difference is that their ‘stimulus 579 
on blocks’ are composed of multiple pulses. 580 
 581 
GCaMP filters 582 
The GCaMP filter g(x) is modeled as a difference of exponentials with parameters matching those 583 
of Chen and colleagues (32). This procedure is complicated by the volumetric nature of the 584 
imaging data. Consider two sensory neurons with identical calcium dynamics; they respond to 585 
stimulus with the same timescale. Neuron A is in imaging slice 0, while neuron B is in slice 7. 586 
These two neurons will have the same calcium timings relative to the stimulus. However, Neuron 587 
B will appear to have faster response kinetics since it is acquired over half a second later (relative 588 
to stimulus onset/removal) compared to neuron A. Thus, the slice in which the neuron appears 589 
needs to be considered in the creation of its GCaMP filter: 590 

where g(x) refers to the difference of exponentials and nz refers to the number of z slices. The 592 
normalized g(t) filter is applied via a linear convolution to transition between calcium and GCaMP 593 
dynamics. 594 
 595 
ON and OFF sensory neuron classification 596 
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Sensory neurons were classified as either ON or OFF for neuronal activity collected during 597 
bacteria↔buffer stimulus sequences. The change in normalized fluorescence over a series of ≥ 598 
10 stimulus pulses (all trials have at least a few of these). Both the first 10 volumes into a bacteria 599 
pulse and the first 10 volumes into a buffer pulse (following bacterial removal) were considered. 600 
The following metric was then calculated: 601 

where f is normalized fluorescence, t is pulse onset, P is the number of bacteria pulses, and Q is 603 
the number of buffer pulses. The cells with the highest ranks considered as potential ON cells, 604 
and the cells with the lowest ranks were considered as potential OFF cells. Rank cutoffs were 605 
selected manually for each trial. ON cells were categorized as those neurons that obviously and 606 
immediately increased activity upon bacteria onsets, and immediately decreased upon bacteria 607 
removals (Fig. 1I). In contrast, OFF cells were classified as neurons that decreased activity upon 608 
bacteria onsets and increased upon bacteria removals. For both ON and OFF cells, baseline (low 609 
variance) activity occurred when the stimulus of interest was absent (during buffer pulses). This 610 
distinguishes OFF-bacteria sensory neurons from hypothetical ON-buffer sensory neurons, for 611 
which baseline activity would occur during bacteria pulses.  612 
 613 
Encoding model 614 
The encoding model predicted ON and OFF sensory neuron activity from stimulus features. The 615 
core primary sensory model consists of three parts: (1) a set of cascade basis functions, (2) 616 
coefficients for the basis functions, and (3) a GCaMP transformation. 617 
 618 

 620 
where 𝑥𝑥(𝑡𝑡) is the inferred calcium level of the cell and is calculated as the sum of the temporal 621 
filters (ODE model solutions), 𝑓𝑓𝑔𝑔 is the GCaMP filter, and 𝑝𝑝 is a positive value required for the 622 
GCaMP transformation. The fitting procedure learns values for the time constant τ and the basis 623 
coefficients 𝑎𝑎𝑖𝑖. This model uses the solutions to these ordinary differential equations 𝑥𝑥𝑖𝑖(𝑡𝑡) as 624 
basis functions. For a given model instantiation, each equation is assigned a value for τ. After the 625 
ordinary differential equations are solved analytically, the model can be linearized, allowing for 626 
robust estimates of the ai coefficients (see Methods). We then used a random search strategy to 627 
obtain estimates of τ. Moreover, by toggling the coefficient constraint, we can test whether perfect 628 
adaptation is necessary to predict sensory neuron activity. This constraint yields perfect 629 
adaptation as all the ordinary differential equation basis functions saturate at the same value 630 
([𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]). 631 

We used a random search strategy to find the correct set of basis functions. The strategy 632 
chooses N basis time constants for an N cascade model and an initial estimate of p power. It 633 
solves the basis equations analytically for a given stimulus pattern and produces an initial 634 
estimate for the coefficients by fitting to a linearized approximation of the neuron’s calcium trace. 635 
In this approximation, the raw sensory neuron fluorescence trace is deconvolved using the 636 
Richardson-Lucy method (57) and taken to the (1/p) power. The initial estimate for the 637 
coefficients is the solution to the resulting linear regression equation. Finally, this system fits the 638 
full model (free variables consist of basis coefficients and p power) is fit to the raw fluorescence 639 
trace using gradient descent. We then repeat this process for a large number of random searches 640 
to define the basis functions.  641 

 642 
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Decoding model 643 
The decoding model predicted stimulus states activity from stimulus features. For both the 644 
decoding and prediction analyses, we split the data into contiguous blocks of ~10 second (16 645 
volume) duration. Within each block, subwindows were created in a rolling fashion. For instance, 646 
for an N volume prediction window, there are 16-N legal, overlapping subwindows within each 647 
block. It should be noted that there is no overlap between prediction windows of adjacent blocks. 648 
Test/train sampling is done at the block level, guaranteeing no train/test prediction overlap. This 649 
system captures sharp transitions while measuring targets over multiple time bins, thereby 650 
limiting noise in the targets. We chose a length of 16 volumes because this captures the entirety 651 
of motor neuron event initiation (for all motor neuron classes). This causes bootstrap sampling to 652 
be performed at the event level, stopping a small, handful of events from dominating model 653 
outcomes. We did not test other blockstrap sizes. 654 
 We used Gaussian basis functions for both decoding and prediction tasks. This involves 655 
filtering network history and stimulus data through these basis functions before being fed into 656 
decoding and prediction models. We chose specific gaussians (parametrized by mean and 657 
variance) by hand-tuning model performance on the hyperparameter set. 658 
 Given the choice of 16 volume blocks and 8 volume time windows, there are 16-8=8 659 
prediction windows within each time block. Unlike the prediction task, the decoding task centers 660 
the prediction windows relative to the input data. For instance, in one decoding task, RME/AVA 661 
cell cluster data from t+4-8 to t+4+8 volumes is used to predict whether the stimulus is 662 
on/off/altered from t to t+8 volumes. The unit of 8 volumes was chosen because many of the 663 
pulse protocols use 10 volume pulses as a base unit. Thus, using 8 volumes guarantees a fair 664 
number of samples of the on stimulus class. We did not test other volume lengths. 665 
 In the decoding analyses, we predict five classes of stimulus patterns from network 666 
activity (58). Prediction from worm identity alone serves as the null model for all decoding 667 
analyses. In order to ensure best performance for the null model, we balanced the classes within 668 
each worm. For each worm, if there are N occurrences of class A in the training set, there are N 669 
occurrences of class A in the test set. We ensured this by randomly removing prediction windows.  670 
 671 
SDT–MLR model 672 
We used different L1 norms for each of the multinomial logistic regression input classes: 673 
AVA/RME/SMDV/SMDD terms, ON/OFF cell terms, and worm identity terms. The worm identity 674 
terms essentially make the forecasting models into a random-intercept model (59). Initial 675 
experiments found no benefit in random-intercept style models. The number of network states 676 
and number/shape of gaussian filters were additional hyperparameters. A combination of hand-677 
turning and grid search were used on the hyperparameter set to find good regularizers. This 678 
hyperparameter set was also used for the soft decision tree, which could also be thought of as an 679 
additional hyperparameter in this study. These hyperparameters were frozen on the out-of-680 
bootstrap analysis (42). 681 
 In the forecasting task, we predicted changes in GCaMP fluorescence from time t to t+T1 682 
using network history from t-T2 to t and sensory neuron activity from t-T2+T1 to t+T1. We used a 683 
length of twenty-four volumes for T2 for all prediction analyses. We treated the length of T1 as an 684 
additional hyperparameter. As in the decoding analysis, these prediction windows are contained 685 
inside larger data blocks. We performed train/test sampling at the block level. We chose sixteen 686 
seconds (24 volumes) for T1 in all models, as 16 seconds is sufficient to capture the majority of 687 
command neuron events. 688 
 RME and AVA activation and inactivation is clearly probabilistic. We used a multinomial 689 
logistic regression (MLR) as the base model for motor-neuron activity prediction. In order to use 690 
MLR, we discretized GCaMP fluorescence activity in every prediction window. This is done by 691 
subtracting the average GCaMP fluorescence over the prediction window by the GCaMP 692 
fluorescence level at the beginning of that window. 693 
 RME and AVA neurons have non-linear calcium dynamics. Two of these features are 694 
boundedness and momentum. Members of the AVA cluster exhibit boundedness: their activity is 695 
limited to a range between their upper and lower stable states. Also, activity in these neurons 696 
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appears to have momentum: when one of these neurons begins a transition between the stable 697 
states, it will tend to complete that transition. A single, linear model is unable to describe both 698 
momentum and boundedness. It must learn the positive correlation between a future AVA rise 699 
and past AVA activity to capture momentum. However, this positive correlation should weaken 700 
and become negative as AVA nears its upper bound, since AVA activity does not rise above this 701 
bounded limit. Thus, a gating model is required to capture the change in this positive correlation. 702 
 Here, we employ multinomial logistic regression (MLR) models to capture nonlinear 703 
dynamics, allowing us to capture features like momentum and boundedness. A gating model is 704 
used to divide the space of network histories into subspaces. Each of these different subspaces 705 
is associated with a different MLR model. This approach with two submodels can simultaneously 706 
model both momentum and boundedness in AVA. In one theoretical solution, one MLR submodel 707 
is only active when the AVA cell cluster is near its lower bound, while another is active when AVA 708 
near its upper bound. The first submodel learns a positive correlation between a past AVA 709 
increase in activity and future AVA rise (momentum), while the second learns a weak positive or 710 
negative correlation (boundedness). 711 
 We use a hybrid model combing soft decision trees and multinomial logistic regression 712 
(SDT–MLR) method to divide the network trajectory space into different subspaces. We assumed 713 
that GCaMP fluorescence changes in each of these subspaces can be well-described by an 714 
MLR. A soft decision tree is a form of oblique decision tree that is end-to-end differentiable (40). 715 
Each branch of the soft decision tree is a different logistic regression model on the same input 716 
vector, which outputs a left vs right probability. These left and right probabilities are multiplied by 717 
the predicted class probabilities of the corresponding left and right subtrees. In this manner, soft 718 
decision trees are essentially hierarchical filters that can be learned through gradient descent. 719 
The outputs of the soft decision tree weigh the different MLR models. For instance, a soft 720 
decision tree with depth 2 and width 2 will have 4 output states. Each of these output states are 721 
associated with a different MLR. All of these MLRs are trained against the entire dataset. 722 
However, the data points are weighted by the particular soft decision tree output leaf. Hence, 723 
different MLR models will focus on different subsets of the data.  724 

We found that averaging predictions across SDT–MLR models improves cross-validation 725 
performance. This averaging is done at two levels. First, within a SDT–MLR model, the 726 
predictions of each MLR are weighted by the soft decision tree and averaged. Second, these 727 
averaged predictions are further averaged across several SDT–MLR models. Here, twenty-five 728 
SDT–MLR models were fit separately to the hyperparameter set. The best hybrid model was 729 
chosen for analysis on the cross-validation set. For training on the cross-validation set, the Soft 730 
Trees were frozen; only the MLRs were trained. Hence, training is convex (weighted multinomial 731 
logistic regression) on the cross-validation set. Freezing the soft decision during cross-validation 732 
allows us to easily align model data across bootstraps. This, in turn, gives us information on the 733 
variance of different features of the MLR models. 734 

In our exploration of the hyperparameter set, we found that SDT–MLR models tend to 735 
converge on bad solutions if not regularized. These bad solutions are characterized by poor 736 
training and test set performance as well as state imbalance. The Soft Tree assigns most data 737 
points to one of its submodels, while its other MLR submodels are trained on very small subsets 738 
of the data resulting in state imbalance. We solved this issue by maximizing entropy regularizer 739 
H(X):  740 

where Xi is the ith input data point in the minibatch. Sk is the probability assigned to the kth 742 
state/submodel by the soft decision tree. Thus, Vk is the average probability of state k across the 743 
minibatch. Therefore, H(X) is high when all states are equally represented in the minibatch. It 744 
should be noted that this regularizer does not directly penalize high state probabilities. 745 
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Division of stimulus sequences  746 
To compare the effect of short versus long stimulus pulses in the SDT–MLR model, complete 747 
stimulus sequences were divided into low-variance (long pulses) and high-variance (short pulses) 748 
stimulus patterns. Low-variance stimulus patterns were constructed by dividing the trial into pulse 749 
blocks of ~15 seconds, with the transition probabilities p(switch on | off) = 0.2 and p(switch off | 750 
on) = 0.4. High-variance stimulus patterns were also constructed by dividing the trial into bacteria 751 
or buffer blocks with the same transition probabilities as for low-variance stimulus patterns. The 752 
difference between low- and high- variance stimulus patterns is that the bacteria block consists of 753 
a series of sub-pulses rather than a single constant pulse. These sub-pulses are ~3 seconds 754 
bacteria and ~3 seconds buffer. 755 
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Figure 1. Food-stimulated whole-brain activity reveals six functional clusters. (A) Stimulus 919 
presentation and imaging setup. A computer precisely controls delivery of a stimulus sequence 920 
that alternates between variable-length pulses of two liquid flows: bacterial food stimulus (gold) 921 
and control buffer (light blue). This stimulus sequence is presented to the nose of a C. elegans 922 
animal that is restrained in a microfluidic chip. Volumes of the C. elegans head are acquired and 923 
subsequently processed to acquire calcium traces. (B–D) Identification of neurons in the 924 
NeuroPAL–GCaMP6s strain. Some photobleaching occurred due to acquisition after calcium 925 
imaging (see Methods: Cell Identification). (B) RME motor neuron and AVA command neuron. (C) 926 
SMDD motor neuron. (D) SMDV motor neuron. (E) Neurons and their associated direction of 927 
locomotion. (F–G) Number of neurons in each functional cluster for all animals, based on > 85% 928 
correlation with representative neurons. (F) non-NeuroPAL–GCaMP5K animals. (G) NeuroPAL–929 
GCaMP6s animals. (H) Calcium activity of low-noise active neurons for a single worm. Gray 930 
shading represents bacterial stimulus pulse duration. (I–K) Calcium activity averaged across all 931 
traces within a functional cluster. Colors of average calcium traces corresponds with colors of 932 
individual traces in (H). (I) OFF and ON clusters. (J) AVA and RME clusters. (K) SMDD and 933 
SMDV clusters. 934 
  935 
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Figure 2. Bacteria onset and removal differentially drive activity of sensory, AVA, and RME 939 
clusters. (A) Stimulus sequence features are fed into an encoding model (see Materials and 940 
Methods: Encoding model) to predict sensory cluster activity. (B–C) Representative examples of 941 
sensory neurons raw traces compared with model predictions. (B) ON cell. (C) OFF cell. (D–E) 942 
Time-to-half-peak distributions for the best performing (D) ON and (E) OFF cell adapting models. 943 
(F–H) Stimulus states (left, highlighted in gray) and their corresponding flow configurations 944 
relative to the C. elegans nose. (F) Bacteria from channel 1 flows over nose. (G) Buffer from 945 
channel 2 flows over nose. (H) As a control, buffer emanates from both channel 1 and channel 2. 946 
(I) AVA and RME cluster activity, as well as worm identity, is fed into a decoding model (see 947 
Materials and Methods: Decoding model) to predict different stimulus states (highlighted in gray). 948 
In the null model, only worm identity is used. (J) Out-of-bootstrap cross-validation performance of 949 
the full decoding model that includes AVA and RME cluster activity. (K–R) Temporal filters 950 
predicting stimulus states from AVA and RME cluster activity for buffer↔buffer stimulus 951 
sequences (K-N) and bacteria↔buffer sequences (O–R). Gray shading represents the prediction 952 
time window (with 0 s as the halfway point of the prediction window), such that preceding time 953 
represents baseline activity and subsequent time represents delayed effects. Median bootstrap 954 
temporal filters are plotted, with graded shading indicating 50%, 75%, and 90% of bootstraps.  955 
 956 
  957 
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Figure 3. Identification of interpretable network states that vary in sensory gating properties. (A) 961 
The top four network states identified by the soft decision tree gating model portion of the SDT-962 
MLR forecasting model (see Fig. S5, Materials and Methods: SDT-MLR model). Cyan shading 963 
represents the time windows for which a particular state’s probability exceeds 0.75. (B–C) 964 
Temporal filters predicting rise and fall of AVA and RME cluster activity from (B) recent history of 965 
AVA, RME, SMDV, and SMDD cluster motor/command activity; and (C) ON and OFF cell cluster 966 
sensory activity. (B–C) Median bootstrap temporal filters are plotted, with graded shading 967 
indicating 50%, 75%, and 90% of bootstraps. (D) Difference in out-of-bootstrap cross-validation 968 
performance between models that included both network history and sensory activity and models 969 
that that only included network history. 970 

971 
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Figure 4. Effect of stimulus timescales and sensory context on AVA and RME clusters. (A–B) 974 
Maximum magnitudes of temporal filters predicting rise and fall of AVA and RME activity from 975 
sensory neuron clusters. Maximum magnitudes are calculated from t-12s to t-0s relative to the 976 
start of the prediction window (t). Sums of absolute values of magnitudes measure the overall 977 
sensory influence within a state. (A) Comparison of all stimulus pulse lengths, only high-variance 978 
pulses, and only low-variance pulses. (B) Comparison of buffer↔buffer and bacteria↔buffer 979 
stimulus sequences. Only high-variance pulses were compared. Channel 1 and 2 are the same 980 
as ON and OFF, respectively, for bacteria↔buffer stimulus sequences, as seen in (A).  981 
  982 
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 984 
Figure S1. Characteristics of functional clusters in animals presented with buffer↔buffer stimulus 985 
sequences. (A) Number of neurons in each functional cluster. (B) Example traces of ON-1 (green) 986 
sensory neurons that respond to buffer from channel 1, and of ON-2 (orange) sensory neurons 987 
that respond to buffer from channel 2.  988 
  989 
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 991 
Figure S2. High-noise neuronal traces omitted from clusters still exhibit similarity to cluster 992 
activity. Non-sensory neurons that did not exhibit strong correlation (>85%) with AVA, RME, 993 
SMDD, or SMDV were excluded from clusters. Examples of excluded high-noise cells that 994 
resemble the AVA cluster are shown.  995 
  996 
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 997 

 999 
Figure S3. Encoding model performance. Performance comparison of (A) ON and (B) OFF cell 1000 
models with varied levels of adaptation, as measured by the change in MSE (mean squared 1001 
error) from the null model to the full model. Boxplots represent the distribution of MSE differences 1002 
across hierarchical bootstraps.  1003 
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Figure S4. AVA and RME activity from both NeuroPAL–GCaMP6s and non-NeuroPAL–1005 
GCaMP5K strains are similarly driven by bacterial stimuli. (A–C) Out-of-bootstrap cross-1006 
validation model performance for the full decoding model that includes (A) AVA and RME cluster 1007 
activity from the NeuroPal-GCaMP6s strain during bacteria↔buffer stimulus sequences, (B) 1008 
SMDD and SMDV cluster activity from the non-NeuroPal-GCaMP5K strain during 1009 
bacteria↔buffer stimulus sequences, and (C) AVA and RME cluster activity from the non-1010 
NeuroPal-GCaMP5K strain during buffer↔buffer stimulus sequences.(D–G) Temporal filters 1011 
predicting stimulus states from AVA and RME cluster activity, for NeuroPAL–GCaMP6s (left) and 1012 
non-NeuroPAL–GCaMP5K (right) strains. Gray shading represents prediction time windows, 1013 
such that preceding time represents baseline activity and subsequent time represents delayed 1014 
effects. Median bootstrap linear filters are plotted, with graded shading indicating 50%, 75%, and 1015 
90% of bootstraps. (B) prolonged bacteria, (C) prolonged buffer, (D) bacteria-to-buffer transition, 1016 
and (E) buffer-to-bacteria transition. 1017 
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 1020 
Figure S5. Tree organization of SDT-MLR model. (A) Hierarchical filters divide the space of 1021 
network trajectories into different linearizable subspaces. (B) The top four network states 1022 
identified by the soft decision tree gating model portion of the SDT-MLR forecasting model (same 1023 
as Fig. 3A). Cyan shading represents the time windows for which a particular state’s probability 1024 
exceeds 0.75. (C) Time was binned into windows, from which state-maximizing windows, in which 1025 
p(state) ≈1, were selected to be used as input for MLR submodels.  1026 
  1027 
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 1029 
Figure S6. SDT-MLR model with only high-variance pulses from bacteria↔buffer stimulus 1030 
sequence presentation. (A) Difference in out-of-bootstrap cross-validation performance between 1031 
models that included both network history and sensory activity and models that that only included 1032 
network history. (B–C) Temporal filters predicting rise and fall of AVA and RME cluster activity 1033 
from (B) recent history of AVA, RME, SMDV, and SMDD cluster activity; and (C) ON and OFF cell 1034 
cluster sensory activity. (B–C) Median bootstrap temporal filters are plotted, with graded shading 1035 
indicating 50%, 75%, and 90% of bootstraps.   1036 
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 1038 
Figure S7. SDT-MLR model with only low-variance pulses from bacteria↔buffer stimulus 1039 
sequence presentation. (A) Difference in out-of-bootstrap cross-validation performance between 1040 
models that included both network history and sensory activity and models that that only included 1041 
network history. (B–C) Temporal filters predicting rise and fall of AVA and RME cluster activity 1042 
from (B) recent history of AVA, RME, SMDV, and SMDD cluster activity; and (C) ON and OFF cell 1043 
cluster sensory activity. (B–C) Median bootstrap linear filters are plotted, with graded shading 1044 
indicating 50%, 75%, and 90% of bootstraps. 1045 
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 1047 
Figure S8. SDT-MLR model for buffer↔buffer stimulus sequence presentation, high-variance 1048 
pulses only. (A) Difference in out-of-bootstrap cross-validation performance between models that 1049 
included both network history and sensory activity and models that that only included network 1050 
history. (B–C) Temporal filters predicting rise and fall of AVA and RME cluster activity from (B) 1051 
recent history of AVA, RME, SMDV, and SMDD cluster activity; and (C) ON and OFF cell cluster 1052 
sensory activity. (B–C) Median bootstrap temporal filters are plotted, with graded shading 1053 
indicating 50%, 75%, and 90% of bootstraps.  1054 
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